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New Narrow-Band Dual-Mode Bandstop
Waveguide Filters

JING-REN QIAN anp WEI-CHEN ZHUANG

Abstract — A complementary relation between a dual-mode bandpass and
bandstop waveguide filter is found. Then a new idea for constructing a
bandstop filter is developed. Two trial samples of bandstop filters are
constructed to demonstrate the principle.

NOMENCLATURE

M;; Normalized coupling coefficient between
the ith and the jth loop.

e, Equivalent source in the first loop.

VA Impedance of each loop.

R,R, Equivalent loads in the first and last loop,
respectively.

n ~ Number of the loops in Fig. 1.

i ~ Loop current in the kth loop.
Voltage matrix for a bandpass filter cir-
cuit.

Z Impedance matrix for a bandpass filter
circuit. ,

1  Current matrix for a bandpass filter cir-
cuit. ,

R, Resistance looking into the source, char-

' acteristic impedance.

w Angular frequency.

€ Source voltage.

) A diagonal matrix.

M Coupling matrix.
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My, M, Normalized coupling coefficient between

n n+l
the main waveguide and the first loop and
last loop, respectively.
m Turn ratio of the ideal transformer.
i Loop -current in the kth loop for a band-
stop filter circuit.
ef,e;, Equivalent source in the first and last
loop for a bandstop filter circuit, respec-
tively.
R, R, Equivalent load in the first and last loop
for a bandstop filter circuit, respectively.
E’ Voltage matrix for a bandstop filter cir-
= cuit.
z’ Impedance matrix for a bandstop filter
circuit.
I’ Current matrix for a bandstop filter cir-
cuit.
S’ A diagonal matrix.
t,r - Transmission and reflection coefficients
for a bandpass filter.
t,r’ Transmission and reflection coefficients
for a bandstop filter.
AN Determinant of Z and Z”, respectively.
Ay, Al,,, A,, Co-factors of Z.
11 A% A’ Co-factors of Z".
V,_s Determinant of the Z matrix with first,
) last rows and first, last columns omitted.
V,,V,_1 A, A,, with R =0, respectively.
6,0’ Arguments of ¢ and ¢/, respectively.

w, Relative frequency at the transmission
pole and zero for a bandstop filter.
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@, & Relative frequency at the transmission
pole and zero for a bandpass filter.

@) Relative bandwidth.

Wy Relative frequency difference of the pass-
band edges.

€ Ripple constant.

o External quality factor.

k Coupling coefficient.

I. INTRODUCTION

ANDSTOP WAVEGUIDE filters have been, almost

without exception, realized by resonators, which are
connected in cascade and spaced an odd multiple of a
quarter wavelength apart along the waveguide [1].

These kinds of filters can be realized with Butterworth or
Chebyshev polynomials. To get an elliptic function, Rhodes
[2] suggested that the resonant frequencies of these cavities
should be different and the spacings between them should
be different and are approximately three quarter guide
wavelengths. However, to the authors’ knowledge, no prac-
tical construction of such a filter has been reported.

In order to improve the frequency selectivity, the num-
ber of sections of this type of filter must be increased,
which leads to considerable increase in size and weight of
the filters.

In this paper, a new idea for constructing bandstop
waveguide filters is presented. There are only two coupling
slots or a single hole by which a multiple-coupled cavity
structure is coupled to the main waveguide of the filter.
The multiple-coupled cavity structure has been described
by several authors [3]-[7] for realizing high-performance
narrow-band bandpass waveguide filters. Now, however, is
the first time the same structure has been applied to realize
bandstop filters.

A multiple-coupled cavity structure contains several
identical cavities, and in each cavity orthogonal or dual
modes are resonant at the same frequency. The couplings
take place not only among the modes of different cavities,
but also between the dual modes within each cavity. Its
equivalent circuit is shown in Fig,. 1.

The use of the dual-mode structure and the cross-cou-
pling technique makes the present bandstop filter much
smaller in size and weight.

When such a bandpass filter has the same multiple-cou-
pled cavity structure as a bandpass filter does, and when
the symmetry and identity conditions are achieved, then
their transmission responses are complementary to each
other. The passbands correspond to the stopbands, and the
transmission poles and zeros of one filter correspond to the
zeros and poles of the other.

€ Z+R M, jM;,
8 My, Z My
: = jM13 jM23 Z

0

0 len jMZn jM3n
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Fig. 1.

Equivalent circuit for multiple-coupled cavity structure.
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Fig. 2. Filter circuits. (a) Bandpass filter. (b) Bandstop filter.

This complementary relation makes it possible to syn-
thesize bandstop filters by the methods of synthesizing
bandpass filters with coupled cavities.

To demonstrate the principle discussed, two sample filters
operating at a 5-cm wavelength were constructed. The first
sample is a fourth-order antimetric elliptic bandstop wave-
guide filter. [ts complementary filter is the bandpass filter
described by Williams [3].

The second sample is a six-mode waveguide bandstop
filter. The method of synthesis of the filter is the same as
that described by Atia and Williams [4], [6].

II. THEORY

Multiple-coupled cavity structures which have been used
to realize bandpass waveguide filters are now used to make
a bandstop waveguide filter. Filter circuits, with a blank
block for representing the circuit shown in Fig. 1, are
illustrated in Fig. 2(a) and (b).

The equivalent circuit for the bandpass filters is shown
in Fig. 2(a). The first and the last circuits in Fig. 1 are
coupled to the source and the load, respectively, through
the couplings My and M, ;.

With reference to the equivalent circuits in Fig. 1 and
Fig. 2(a), the loop equations for narrow bandwidths can be
written as

. il
.]Mln i

JMZn .2
. l

.]M3n 3 (1)
Z .jMnfln . :
l
jMn—ln Z+Rn ”."1
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or
E=7ZI
where

R=M021/Ro R =ann+1/R0

n

2

. 1 .
sz.(w—;) ey =— jegMy /Ry

and the meaning of e,, R, is shown in Fig. 2(a).
Further, the impedance matrix Z can be expressed as

Z=S+jM

where M is an off-diagonal matrix and is termed the
coupling matrix characterizing the equivalent circuit in Fig.
1. 8 is a diagonal matrix with elements (Z+ R, Z, Z, --- Z
+R)).

In Fig. 2(b), an equivalent circuit for the new type of
bandstop filter is shown. The first and the last circuits in
Fig. 1 are coupled to the main waveguide at the same place
but with a 90° phase difference. Thus, if coupling My, is
expressed as a series mutual inductance, then coupling M,/
2+1 Will be expressed as a shunt ideal transformer with the
ratio m:1. This can be realized by opening a longitudinal
and a transverse slot at the same place of the broadwall of
a rectangular waveguide. The required phase difference is
achieved because in the main waveguide the magnetic field
components H, and H, (which link the fields of the dual
modes through the longitudinal and the transverse slots,
‘respectively) are 90° out of phase with each other.

The equivalent circuit for a two-slot coupler can be
derived from [1, sec. 5.10]. But the equivalent circuit shown
in Fig. 2(b) was derived in another paper by the authors
[8]. The shunt ideal transformer results from the two
cascaded impedance inverters. The one is caused by mutual
inductance M, ,,, and the other can be imagined as a
quarter wavelength line with characteristic impedance R,
which results in a 90 ° phase difference between the two-slot
couplers. Then it is easy to find the ratio of the ideal
transformer m = R, /M, , ...

Referring to Fig. 1 and Fig. 2(b), the loop equations for
the narrow bandwidth can be written as

€o R, JMg 0
0 JMg, z M,
0 _ 0 jM,, 4

o JMg
O 0 ]Mln—27n_ .]M2n
0 m 0 0

Now let us transform the ij loop and i, ; loop, and add
them to the i{ loop and the i’ loop, respectively. This can
be done by using the first two and last two equations of
(3), and eliminating #{,i,,, in these equations. Then we
shall have

e;=(Z+ R)ij+ jMyi}+ jMyi+ - + jMy,i

In*n

e, = jMy,i{+ jMy,i5+ - +(Z+R,)i, (4)
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where
e[=—jeeMs/(2Ry)  er=ey/2m=eoM;, ., /(2R,)
(%)

and

2 2
R'= Mg /(2R,) =M., .1/(2Ry).
(6)
From (4) and the unused equations of (3), we obtain the
following matrix equations:

R, =R,/2m?

e Z+R  jMy, My, ..M, |4

JM,, Z My My, || D2
q =| M3 My z -JM;, i (7)
e'/l len jMZn jM3n Z‘*‘R;, 1;‘

or

E'=ZT"=8T"+ jMI’
where M is the coupling matrix and S is a diagonal matrix
with elements (Z+ R’, Z, Z, - -+ Z+ R),).

One can readily see that the impedance matrices in (1)
and (7) are similar and only the expressions for R, R, and
R’, R}, are different.

From Fig. 2, the transmission and reflection coefficients
for both filters can be found as follows:

t=(2Ry /)iy r=1—(2R/ey)iy-
In (8), iy and i, can be found by solving (1). When
1= JM, 118, /Ry
is inserted in (8), we can get the ¢ and r for bandpass filters

2M M A
t=(__1)n Ollzonn—#l _&1

(8)

2M021 All
R() A N (9)

When i}, i, resulted from (3) are inserted in (8), one

r=-1+

0...0 R, i}
. o JMg .
JMy5...JMy, m I
JMy; .. jM,, 0 i (3)
. RO ]
]M3n...Z —W 1,
0...—1 -m if

readily finds that ¢’ and r’ for bandstop filters are

’ 1 MO/I ’ n/n+1 ’
=1 X 2ROA“+ 2R, X,
1 2
= MIN, _M/n Aln
ZROA,( 0111 nn+1=nn

. n+1 ’ I4 ’
+J(_1) N 2M01Mnn+1A1n)

(10)
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where A and A’ are the determinants of impedance matrices
in (1) and (7), respectively, A, and A}, are the co-factors
of the corresponding impedance matrices with the first row
and nth column cancelled. A,;, A7, &/, are also the corre-
sponding co-factors, where the nonprime sign and prime
sign apply for determinants of Z and Z’ in (1) and (7),
respectively.
Under the symmetry conditions

M01=Mnn+1 All_[:Mn‘Fl*ln'Fl*j (11)
and identity conditions
‘/Q—MOI = MO/I ﬁMn n+1= Mn’n+1 (12)

since A=A =4, Ay, =4, A=A, one readily finds,

nn’

from (9) and (10)

IV n Aln . ’_ A11
t=jr'=(-1)"2R A r=—1¢"=2R A -1 (13)

where

R=R,=R'=R,=M2/R,. (14)

As the equivalent circuit in Fig. 2 is assumed to be loss
free, then from the power conservation law we have

t?+ 1012 =1 P+ P =1

(15)

This is the complementary relation between the band-
pass filter and the bandstop filter, which contain the same
multiple-coupled cavity structure as expressed in Fig, 2,
and for which conditions (11) and (12) are achieved.

But the complementary relations (15) are justified only
in the small bandwidth, where each cavity can be treated as
a single resonant circuit, and the waveguide can be consid-
ered as a transmission line.

One readily finds from (15) that the zeros and poles for
the two complementary filters exchange their positions.

The relation for the time-delays of a pair of complernen-
tary filters can be derived as follows.

Let the determinant of the Z matrix with first, last rows
and first, last columns omitted is V,_,. Let determinant V),
be equal to A with R =0, and V,_; equal to A;;, with R = 0.
It is obvious that

A=V, +R*V,_,+2RV,_;
Ay =RV, ,+V,_;.

(16)
(17)
In the case of lossless media, Z is imaginary and M, ’s are
real. So when n is even, ¥, and V,_, are real, and V,_; and
Ay, arc imaginary. When # is odd, the reverse is true.

If (16) and (17) are used in (13), one readily finds the
arguments of ¢ and ¢/, which are expressed as

_ _1j(V;l+RZI/n*2)

9 SRV (18)
_4 J2RV,

g =g~ 1L Tno1 19

v R, (1)

respectively. From (18) and (19), it is easy to see that
tg0rgf’=—1 or

0—-60'=x/2+pnr (p=0,1,2,---). (20)
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This means that the difference of the time-delays for a pair
of complementary filters is a constant.

Thus, one can conclude that two complementary filters
have complementary transmission responses but same
time-delay responses.
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In this section, we shall show how the bandstop wave-
guide filters can be realized by means of the principle just
proved.

Of the many configurations of the multiple-coupled cav-
ity structure, which have been used in bandpass filters, we
use only the cannonical form with dual-mode folded geom-
etries to realize the bandstop filters [5], [6]. The reasons for
such a choice are that its input and output terminals are
close together and this makes it possible to couple to the
main waveguide at the same plane, and that the optimum
transfer function (including the exact elliptic function re-
sponse) can be achieved by this configuration.

To demonstrate the complementary principle, we have
realized two bandstop filters with symmetrical canonical
coupling set for n =4 and n = 6, respectively.

In Williams® paper [3], a four-mode elliptic bandpass
waveguide filter was described. Now we use it as a comple-
mentary one to design an elliptic bandstop waveguide
filter.

Taking account of the mode order as shown in Fig. 3, we
can use Williams’ formulas to design such a bandstop
elliptic function fiiter.

The first step in the design is to choose the poles w, and
the zeros w, from given filter specifications (i.e., the relative
bandwidth . and the relative frequency difference of the
passband edges w).

Then one must evaluate the specifications of the comple-
mentary bandpass filter. We can use (15) to find the
bandpass ripple constant € from the given ripple level in
the stopband of the original filter. The poles w, and the
zeros w, of the complementary filter are as follows:

REALIZATION

—
w, = W, ®

The next step is to evaluate the equivalent circuit parame-
ters (i.e., R, My,, M,,, M,,) by Williams’ formulas.

A C-band elliptic bandstop filter with relative band-
width 2.506 percent was designed according to the proce-
dure outlined above. From the given specifications (w] =
0.02506, w; = 0.03305), one readily finds the zero and the
pole for the filter [9]

w, =1.4094 w, =0.9362.

Furthermore, the given ripple level in the stopband is 17
db. From these data, and according to the procedure, we
find
R=1.11133 M, =0.7745
M, =7F04142 M, = +0.8603.

The method of realization of these parameters in wave-
guide cavities structure is the same as in Williams® paper if
the change in mode order is taken into account.
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Fig. 3. A four-mode elliptic bandstop waveguide filter.

The transmission response curves are shown in Fig. 4.
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The theoretical and experlmental results are close enough Fig. 4. Transmission characteristics of the four-mode bandstop wave-

to demonstrate that the complementary principle is true for
the four-mode filter. Meantime, we have realized the band-
stop elliptic filter function in a waveguide structure, al-
though its stopband attenuation is not large enough to be a
‘practical filter, It can be improved if we start with a higher
ripple level in the stopband.

The second example is a experimental six-mode band-
stop filter, a photograph of which is shown in Fig. 5(a).
The canonical coupling set [5] can be realized by employ-
ing dual-TE;;; circular cavity modes in three physical
cavities and providing additional cross—couphngs between
cavities 1 and 6, and 2 and 5.

The design procedure is the same as above. However, we
now use the synthesis technique described by Atia and
Williams [4], [6] to design the equivalent circuit parameters.
This can be done by iteratively rotating the coupling
matrix and resulting in certain prescribed couplings an-
nihilated. Then the requlred cawty-couphng matrix is
achieved.

We start with a elliptic low-pass_ prototype with zeros
given by w,=0.725940 and «,, =0.971499, and poles
given by w,, = 2.124779, w,, =1.587714. The ripple level in
the passband and the stopband for the bandstop filter are
0.05 db and 53.1 db, respectively.

Then from (15), the ripple level in the passband and the
stopband for the complementary bandpass filter are
0.0000212 db and 19.4 db, respectively.

According to the same procedure described in [6], we
find the parameters

R=12.635461  M,,=1.627265

M,,=0780838  M,,— —1.132448
M,;=0.660570 M, = —0.426915.

In Fig. 5(b), the cross-couplings M4, M,;, M,, are pro-
vided by screws, special orientations of which are arranged
to provide the couplings with required signs. The M,,( =
M) and M,,( = M) are realized by holes on the com-
mon walls of the cavities, the parameter R (which is the
loaded Q of the input and output cavities) can be realized
by thin transverse slot and a thin longitudinal slot, respec-
tively.

The procedure is applied to design a bandstop filter with
a bandwidth of 40 MH, at a center frequency of 4000
MH,. From the relative bandwidth w, = 0.00997512, one
readily finds the external quality factor Q and the coupling

guide filter.

Longitudinal slot:length; 3& 7 nm
Transverse slot 1ength 33,7
Slot width: 5.00 m

®)

Fig. 5. A six-mode bandstop waveguide filter. (a) Photograph. (b) Con-
struction and geometric parameters.

coefficients by

kij=ws]\l,.j.

The geometric parameters of the slots, holes, and cavities
can be approximately calculated by the formulas presented
in [1], [3] when Q’s and k; ;s are known. But auxiliary
experiments aie necessary for the final determination of
these parameters. The results are shown in Fig. 5(b). The
theoretical and experimental transmission and return loss
characteristics of the bandstop filter are plotted in Fig. 6,
demonstrating the complementary principle presented, and
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Fig. 6. Transmission and return loss characteristics of the six-mode
bandstop waveguide filter.

being consistent with the expected. The experimental re-
turn loss in the passband may have been further reduced if
the mismatch of the terminal could be improved.

IV. CONCLUSIONS

A new idea for constructing a bandstop waveguide filter
containing multiple-coupled cavities has been presented.
The complementary principle for such a bandstop filter
and a corresponding bandpass filter has been proved. By
this principle, a method of synthesizing elliptic bandstop
filters is described. ’

A four-mode and six-mode filter were constructed, and
experimental results confirmed the complementary princi-
ple. Meanwhile, a practical waveguide bandstop filter was
achieved.

It is also interesting to note that the complementary
principle may also be applied to microstrip bandpass and
bandstop filters, if a suitable coupling mechanism can be
found. '
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